
This script will create an archived backup in .tar.gz  format and transfer the backup with rsync.

First you will need to create a SSH key to be later imported to the destination host.

On your slot, type in ssh-keygen  and press ENTER. This should start generating public and private
key pairs.

By default it generates a 2048-bit RSA key pair which is sufficient in most cases

We also recommend to generating the following keys which are more secure than the default.
To generate an RSA 4096 key: ssh-keygen -b 4096

Much more secure than 2048 bit is slower when logging into your slot
To generate a ed25519 key: ssh-keygen -t ed25519

New algorithm, has a smaller key size and faster generation with security comparable to
RSA ~3000

Here, you can press ENTER to save the key pair into the .ssh/  subdirectory in your home directory.

Here you optionally may enter a secure passphrase. You can press ENTER to skip putting in a
passphrase

It is recommended to add in a passphrase
A passphrase adds an additional layer of security to prevent unauthorized users from logging in
should they have your private key

External Backup Script using
Rsync

This is an unofficial script that is provided for your convenience. The script is provided as-is and may not
be updated or maintained by Ultra.cc. Customers are welcome to use and customize unofficial scripts for

their unique needs and requirements. Unofficial support may be offered via Discord only and at the sole
discretion of Ultra.cc staff. Use at your own risk.

Creating Public and Private Keys

$ ssh-keygen

Generating public/private rsa key pair.

$ ssh-keygen -b 4096

Generating public/private rsa key pair.

Enter file in which to save the key (/your_home/.ssh/id_rsa):

$ ssh-keygen -b 4096

Generating public/private rsa key pair.

https://discord.ultra.cc


Then you should see the following output. You now have a public ( id_rsa ) and a private key (
id_rsa.pub ) stored in your Home folder (or on the path you set) that you can use to authenticate

when logging into SSH.

Type in ssh-copy-id username@destinationip

The following output appears. This is normal. This means that your computer does not recognize your
slot. This will happen the first time you connect to a new host. Type yes  and press ENTER to
continue.

Enter file in which to save the key (/your_home/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

$ ssh-keygen -b 4096

Generating public/private rsa key pair.

Enter file in which to save the key (/your_home/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /your_home/.ssh/id_rsa.

Your public key has been saved in /your_home/.ssh/id_rsa.pub.

The key fingerprint is:

SHA256:x23Tr+Ee5TlowA+U9HEquagnog3O09EYHQ346WY usbdocs@usbdocs

The key's randomart image is:

+---[RSA 4096]----+

|=.=. . o+..      |

|.B  o  .oo.      |

|o.o  oo  o       |

|.+ . oo ...      |

| .. .  +S+ .     |

|.      =o==      |

|.o.   o.=o.      |

|o... oE.+o       |

| .. .++..o.      |

+----[SHA256]-----+

Copying the new keys to the destination
host

$ ssh-copy-id usbdocs@85.145.22.545



Type in the SSH password for the destination

Once you entered your password, OpenSSH will connect to the slot. It will then copy the contents of
your ~/.ssh/id_rsa.pub  key into a file in your slot's home directory at ~/.ssh  called
authorized_keys . Then you should see the following output. At this point, your id_rsa.pub  key has

been uploaded to the slot.

Once everything is done, you can login to your destination from your slot with just ssh 
destinationusername@85.145.22.545  which will go straight to your shell securely. If you set a
password for your keys, enter your password.

This Shell script will allow for an automatic backup of important information related to the configuration of your
applications excluding Plex.. It can then be configured to store it or either google drive or a local folder on your
Ultras Slot.

Initial Setup and Configuration

$ ssh-copy-id destinationusername@85.145.22.545

/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: "/home/usbdocs/.ssh/id_rsa.pub"

The authenticity of host '85.145.22.545 (85.145.22.545)' can't be established.

ECDSA key fingerprint is SHA256:9mQKWg1PVPZtxcDASEDdasawrqw.

Are you sure you want to continue connecting (yes/no)?

$ ssh-copy-id destinationusername@85.145.22.545

/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: "/home/usbdocs/.ssh/id_rsa.pub"

The authenticity of host '85.145.22.545 (85.145.22.545)' can't be established.

ECDSA key fingerprint is SHA256:9mQKWg1PVPZtzZ6d5nDjcWUb/Flkuq5VHYRrvwTeRTE.

Are you sure you want to continue connecting (yes/no)? yes

/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that 

are already installed

/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now it is 

to install the new keys

kbguides@kbguides.lw902.usbx.me's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh '85.145.22.545'" and check to make sure that only 

the key(s) you wanted were added.

The Shell script



Your first step is to find the full path of your home directory

pwd

Something like this will be outputted be sure to make a note of it :

/home1/usbdocs

then create three new folders, one may already exist this is fine mkdir ~/lock  mkdir ~/scripts  mkdir 
~/autobackup

Then you need to enter the new folder called scripts

cd ~/scripts

And create the script file

nano backup.sh

Paste the following lines into it :

Save it by pressing Ctrl+X then Y then Enter .

You will need to change the paths home1/usbdocs  to match your own home and username. You will also be
required to change destinationip  to match your destination

Testing

So to test first we navigate to ~/scripts folder we made earlier

cd ~/scripts

#!/bin/bash

exec {lock_fd}>/home1/usbdocs/lock/BackupLock || exit 1

flock -n "$lock_fd" || { echo "ERROR: flock() failed." >&2; exit 1; }

if [ -z "$STY" ]; then exec screen -dm -S autobackup /bin/bash "$0"; fi

DATE=$(date +%Y-%m-%d-%H%M%S)

tar --exclude="$HOME"/.config/plex -czvf "$HOME"/autobackup/MyUSBbackup-$DATE.tar.gz 

"$HOME"/.apps "$HOME"/.config

rsync -aHAXxv --numeric-ids --info=progress2 -e "ssh -p portnumberhere" 

/home1/usbdocs/autobackup username@destinationip:/home/username/destination/folder

flock -u "$lock_fd"



Then we need to allow the backup.sh permissions to run

chmod +x backup.sh

And finally, run it

./backup.sh

If all went well * tar -ztvf ~/autobackup/.tar.gz should show a bunch of files starting with /home/username/.config
and /home/username/.apps inside.

If the script is running and you were to rerun it, you may see an error message “Flock Failed” this is a file lock to
stop multiple downloads running and is normal. If you are sure it isn’t running you can delete the lock file from
~/lock. You can also check the progress of the backup script, which is running in a screen with the command
screen -rd autobackup

If all is well after the test, we can automate the check via crontab

Open crontab with

crontab -e

You may have a choice of editors. We recommend Nano

Inside the crontab add a single line under everything else in the file that looks like this

0 0 */3 * * /home/usbdocs/backup.sh

Save it by pressing Ctrl+X then Y then Enter.

The script will now run every 3 days, checking for files that have changed and syncing them to the destination
folder

Revision #8
Created 14 July 2021 17:49:35 by Joe
Updated 1 September 2023 18:00:22 by varg


