
This guide covers some generic ways to install custom third-party applications on your Ultra.cc service. It is
important to remember that these installation procedures are generic and additional steps may be needed for a
successful installation. As these procedures are made for custom applications not supported by Ultra.cc, we
cannot provide any assistance regarding the installation or issues that may arise once an application has been
installed.

If you want us to add an application to the User Control Panel and officially support it, you can submit a request

on our Feedback site, and we will consider it. Please ensure that you do not add duplicate requests and instead
add your vote if the application has already been requested.

Many applications can be installed with a click of a button on the UCP. However, if you want to install an

application not included on the UCP, you can do so. As long as you adhere to the Terms of Service and do not

break the Fair Usage Policy, you are free to install pretty much any software on your Ultra.cc service.

Important information regarding the installation of custom third-party applications:

You cannot install an application that requires sudo or root privileges, including:
Docker images (look for the local installation instructions instead)
The placing of files outside your home directory

Be mindful of application resource usage and IO utilization. See this guide.

Only use ports assigned to your service. More info can be found here.
Custom third-party applications are not officially supported by Ultra.cc staff.
Always read the documentation associated with the software you are installing.

Before proceeding with any of the below installation procedures, you need to connect to your Ultra.cc service via
SSH.

Connect to your Ultra.cc slot via SSH, see guide here.

Generic Software Installation
This guide is provided for your convenience. The guide is provided as-is and may not be updated or

maintained by Ultra.cc. Unofficial support may be offered via Discord only and at the sole discretion of
Ultra.cc staff. Use at your own risk and only proceed if you are comfortable troubleshooting.

Installation

While selecting a port for your custom application, select one within the port range assigned to your
service; do NOT use the default port the application suggests. It is strictly prohibited to use ports outside

of your range. More info can be found here.

https://cp.ultra.cc
https://feedback.ultra.cc
https://cp.ultra.cc
https://ultra.cc/policies/terms-of-service
https://ultra.cc/policies/terms-of-service#fair-usage
https://docs.ultra.cc/link/235#bkmrk-how-to-check-high-di
https://docs.ultra.cc/books/utility-slot-commands/page/assigned-ports-command
https://docs.ultra.cc/books/secure-shell-%28ssh%29/page/how-to-connect-to-your-ultracc-slot-via-ssh
https://discord.ultra.cc
https://docs.ultra.cc/books/utility-slot-commands/page/assigned-ports-command

Below you will find generic instructions for how to compile from source. Some applications have specific
instructions or required dependencies, so always check the documentation or website of the application you are
installing.

Download the source. Files can be downloaded using various utility tools, such as wget , curl , git ,
etc.

Extract the source.

Navigate into the extracted directory

Configure the application. See app-specific documentation for additional configurations.

Install the software

Add the install directory to the path to enable global application execution.

Some software is available as pre-compiled binaries and do not have to be built within your Ultra.cc service.

Download the binary.

Extract the binary.

Move the binary to a directory within your shell environment PATH.

Compile from Source

wget https://example-url.com/appname-1.23.tar.gz

tar xvzf appname-1.23.tar.gz

cd appname-1.23

./configure --prefix="$HOME/bin" && make

make install

echo "PATH=$HOME/.local/bin:$HOME/bin:$PATH" >> ~/.profile && source ~/.profile

Pre-built Binaries

wget https://example-url.com/appname-1.23.tar.gz

tar xvzf appname-1.23.tar.gz

Once the binary has been moved to a directory within your shell environment PATH, you can run the application
by executing the filename of the binary. With the name example we are using in this guide, it would look like this:
appname

Application software can also be installed by cloning a repository. The most popular repository library is GitHub,

but there are also others like GitLab for example.

While in the GitHub repository, in the top right corner, click the green Image not found or type unknown Code button.
Copy the URL for the repository by clicking the Image not found or type unknown Copy button, as shown in the below image.

Change the current working directory of your Ultra.cc shell to the location where you want to clone the
repo. This is usually the root of your home directory.

Clone the repo. Do note, AUTHOR and EXAMPLE-REPO would be replaced with what matches the repo
you are cloning.

Next, cd into the cloned repo directory. Do note, EXAMPLE-REPO would be replaced with what matches
the repo you are cloning.

mv appname ~/bin/

Cloning a Repo

cd

git clone https://github.com/AUTHOR/EXAMPLE-REPO

cd EXAMPLE-REPO

https://github.com/
https://gitlab.com/
https://docs.ultra.cc/uploads/images/gallery/2023-09/image-1694723444811.png

Inside the cloned repo directory, you will find all the files of the repository, and you are free to execute any scripts

or binaries that are included (subject to our Terms of Service).

In this section, we will show you how to install Python and how to install Python packages with pip . This is
useful as cloned repos occasionally require you to install a Python package. However, before taking further
action, ensure you have Python installed on your Ultra.cc service.

To install Python, see this guide.

Once you have followed the above guide and successfully installed Python on your Ultra.cc service, you are

ready to install Python packages. A complete list of all available Python packages can be found on the Python

Package Index (PyPI).

To install a Python package, execute the following command:

Occasionally a Python application requires you to install multiple packages. This is often handled by a
requirements.txt file and can be installed with the following command:

By executing the above command, multiple Python packages will be automatically installed.

While binaries and scripts can be manually executed or setup as a cron job, you can also set up a systemd
service and run your application as a background process. This allows you to have more control and easier
management of your custom applications.

Check the documentation of the application being installed as often guidance will be provided for
creating a service.
To create a systemd service, we need to create a systemd service file. A userland systemd service file
is stored at ~/.config/systemd/user .
Create the systemd service file with the below command, make sure to replace SERVICE-NAME with a
name of your choice.

Open the systemd service file with the nano editor:

Python Applications

Install Python Package

pip install <package-name>

pip install -r requirements.txt

Systemd Service

touch ~/.config/systemd/user/SERVICE-NAME.service

https://ultra.cc/policies/terms-of-service
https://docs.ultra.cc/books/unofficial-language-installers-3AK/page/install-python-using-pyenv
https://pypi.org/
https://pypi.org/

Paste the following into the editor:

The above systemd service file is an example of a basic systemd service file.
By editing the command after ExecStart= , you can create a systemd service file for a binary,
script, etc.

For a deeper understanding on how a systemd service file works, see this guide.
Once you have edited the systemd service file to your liking, press CTRL+x and y to save and exit,
press ENTER to confirm.
Next, whenever a change has been made to a systemd service file, a reload of the systemd daemon is
required. To initiate the reload, execute the following command:

Next, to enable the systemd service, execute the following command:
Be sure to replace SERVICE-NAME with the name you previously selected for your systemd
service file.

To check if your systemd service has been successfully enabled, execute the following command:

To check if your systemd service has been successfully executed, executed the following command:

nano ~/.config/systemd/user/SERVICE-NAME.service

[Unit]

Description=A description of my custom application

After=network-online.target

[Service]

Type=exec

Restart=on-failure

ExecStart=%h/bin/MY-CUSTOM-APPLICATION

ExecStop=/bin/kill -s QUIT $MAINPID

StandardOutput=file:%h/path/to/logs/my-custom-application.log

[Install]

WantedBy=default.target

Notice the --user option. It is always required when interacting with systemctl on an Ultra.cc service, as
leaving it out requires sudo/root privileges.

systemctl --user daemon-reload

systemctl --user enable --now SERVICE-NAME.service

systemctl --user is-enabled SERVICE-NAME.service

https://linuxhandbook.com/create-systemd-services/

If successful, you should see an output like this:

Done!

If you have installed a custom application on your Ultra.cc service, and assigned one of your unused ports (see

this guide), your application will be accessible via the HTTP protocol. This means that all traffic will be
unencrypted. To secure the traffic of your application, you can enable HTTPS encryption via Nginx.

Create a new configuration file for the custom application:
Be sure to replace APP-NAME with a name of your choice.

Next, open the configuration file with the nano editor:

It is not unusual for app developers to provide a pre-made Nginx template for their application. You
should always search the application documentation or the internet for such a template, and amend the
below template accordingly.
If no template can be found, paste the following as-is into the editor:

Next, in the editor, edit the /baseurl and PORT .
The /baseurl is the last part of your custom application URL and can be set to anything that is
not already used by another application. For example

systemctl --user status SERVICE-NAME.service

ultradocs@spica:~$ systemctl --user status service-name.service

● service-name.service - A description of my custom application

 Loaded: loaded (/home/ultradocs/.config/systemd/user/service-name.service; enabled; vendor

preset: enabled)

 Active: active (running) since Sun 2024-01-08 10:07:17 CEST; 2 days ago

 Main PID: 71643 (service)

 CGroup: /user.slice/user-1104.slice/user@1104.service/service-name.service

 ├─71643 service: master process /home/ultradocs/bin/service -c

 └─71647 service: worker process

Enabling HTTPS Encryption

touch ~/.apps/nginx/proxy.d/APP-NAME.conf

nano ~/.apps/nginx/proxy.d/APP-NAME.conf

location /baseurl/ {

 proxy_pass http://127.0.0.1:PORT;

 proxy_http_version 1.1;

 proxy_set_header X-Forwarded-Host $http_host;

}

https://docs.ultra.cc/books/utility-slot-commands/page/assigned-ports-command

https://username.hostname.usbx.me/mycustomapp .
Some applications require the baseurl to be added to the application configuration, so check the
documentation.

The PORT is the 5 digit port you have used to configure your custom application. See this guide
for a complete list of the port range assigned to your Ultra.cc service. It is strictly prohibited to

use a port outside of your port range, and doing so can lead to a Fair Usage Policy violation.
Next, save and exit the editor by pressing CTRL+x and y , press ENTER to confirm.
Next, ensure you have configured your application to use the same /baseurl as you set in the above
Nginx configuration file.

Restart the webserver from the UCP, or by executing app-nginx restart .
Lastly, check if the application is accessible via the /baseurl you have set up. For example, go to
https://username.hostname.usbx.me/mycustomapp to access the application webUI.

Revision #24
Created 2 September 2023 10:55:18 by varg
Updated 5 November 2024 00:20:50 by warp

https://docs.ultra.cc/books/utility-slot-commands/page/assigned-ports-command
https://ultra.cc/policies/terms-of-service#fair-usage
https://cp.ultra.cc

